SVK/KW/11/3407/3657

Faculty of Engineering & Technology

Eighth Semester B.E. (Mech.)/Sixth Semester B.E.

P.T. (Mech.) Examination

COMPUTER AIDED DESIGN

Sections—A & B

Time: Three Hours] [Maximum Marks: 80]

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer THREE questions from Section A and THREE questions from Section B.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- (5) Use of Design data book and Calculator (non-programmable) is permitted.

SECTION-A

- 1. (a) Explain graphics, application and programming software module with reference to any commercial available CAD software.
 - (b) What is Frame Buffer? Explain.

ZAY—2754 1 (Contd.)

- (h) 1105
 - (a) Write Bresenham's Algorithm for a straight line and draw a line from (10, 10) to (15, 15). Plot the points on graph paper.
 - (b) Explain the concept of homogeneous coordinates in graphic transformation.
 - 3. (a) Fig. 1 shows a circle with radius r = 50 mm. Centre 'A' [10, 10] is to be converted into an ellipse with major axis a = 90 mm and minor axis b = 60 mm. Find the total transformation matrix.

- Fig. 1, Q.3(a)
- (b) What do you understand by Aspect ratio? Explain how it used convert ellipse into circle.
- 4. (a) A triangle having vertices (2, 3), (6, 3) and (4, 8) is reflected about the line having equation

ZAY-2754

2

(Contd.)

	y = 3x + 4. Find the final position of the trians	gle
	using 2-D transformation.	8
4	(b) What is Bezier curve? How it is defined? Who	ere
	it is used?	6
5.	(a) Explain the concept of following modelli	ng
	technique in brief:	
	(i) Geometric Modelling	
	(ii) Solid Modelling	
	(iii) Wire Frame Modelling.	9
	(b) Explain in brief shear transformation.	4
	SECTION—B	
6.	(a) What are the various steps involved in FEM?	
		7
0	(b) Explain in brief the types of element used	in
	FEM alongwith their characteristics.	6
7.	Figure 2 shows a thin plate having uniform thickn	ess
	$t = 25$ mm. Modulus of elasticity $E = 2 \times 10^5$ N/m	m².
	In addition to self weight it is subjected to two po	oint
	loads as shown. The density $\rho = 7.86 \times 10^{-6}$ gm/m	m³.
Z	ZAY—2754 3 (Con	td.)

Model the plate with two one-dimensional elements and determine Stresses in each member.

13

- 8. For a pin joined truss shown in Fig. 3, treating each member as 1-D linear element, determine:
 - (i) Stiffness matrix of each element
 - (ii) Assembled global stiffness matrix

ZAY-2754

4

(Contd.)

13

(iv) Stresses in each member.

9. Fig. 4 shows a two dimensional plate of thickness 20 mm. If load P = 10 kN is applied as shown in fig. determine the nodal displacement.

Fig. 4, Q. 9

ZAY-2754

5

(Contd.)

- 10. (a) Explain Simplex Search Method for multivariable optimization. Also write the algorithm for the same.
 - (b) Explain with suitable example Bisection Method for single variable optimization.