Eighth Semester B. E. Mech And Sixth Semester B. E. Mech (P. T) Examination

COMPUTER AIDED DESIGN

TC' TCI	
Time: Three Hours	[Max. Marks: 80
병원으로 가는 이 집에 가는 이 집에 가장 하는 것이 되었다. 그 이 집에 가는 사람들이 되었다. 그리고 살아왔다.	LIVIAN. IVIALNS. OL

- N. B.: (1) Separate answer book must be used for each section
 - (2) All questions carry marks as indicated.
 - (3) Answer Three questions from Section A and Three questions from Section B.
 - (4) Assume suitable data wherever necessary.
 - (5) Illustrate your answer wherever necessary with the help of neat sketches.
 - (6) Use of non programable calculator is permitted.

SECTION A

- 1. (a) Explain in brief the various CAD module. 7
 - (b) Explain in brief basic functional capabilities required in any CAD package like geometry generator, size generator and geometry modifier.
- 2. (a) Explain the Bresenham's circle drawing algorithm in Ist quadrant. Also show the pixel movement for circle with radius equal to 3 unit for Ist quadrant on graph paper.
 - (b) Explain in brief various types of shear transformation with example. 5
- 3. (a) Reflect the triangle ΔABC about the line 3x-4y+8=0 The position vector of the coordinate ABC is given as A [4, 1]; B[5, 2]; C [4, 3].

SVK/KS/11-3407/3657

Contd.

- (b) A circle with radius r = 8cm, centre [11, 9] is to be converted into an ellipse with major axis a = 11 cm and minor axis b=9 cm. Find the total transformation matrix.
- 4. (a) Given a bezier curve with 4 control point B₀ [1, 0], B₁[3, 3]; B₂[6, 3], B₃ [8, 1] determine any five points lying on the curve. Also draw the rough sketch of curve.
 - (b) Give a 3 x 3 homogeneous coordinate transformation matrix for following translation.
 - (i) Translate the image up 2 units.
 - (ii) Move the image down 2/3 units and left 4 units.
- (a) A homogenous coordinate [3, 2, 1, 1] is translated in the x, y, z directions by -2, -2, -2 respectively; followed successively by a 45° rotation about y axis and 60° rotation about x-axis. Find the final position of homegeneous coordinate.
 - (b) Differentiate between surface and solid modelling.

SECTION B

- (a) Explain in brief the various types a of elements with their salient features.
 - (b) Explain in brief the basic steps of FEM. 5
 - (c) What is shape function? What are its prerequisites?
- 7. For the component shown in fig [7], determine
 - (i) Nodal displacement [Neglect self weight]

- (ii) Stresses in element
- (iii) Reaction

 $E = 2 \times 10^5 MPa$

 $P_1 = 10kN$

Fig. 7

13

- A truss shown in fig [8] with cross section area of all elements equal to 250 mm² and Youngs modulus $E = 2 \times 10^5 \text{ MPa}$
 - (i) Determine the element stiffness matrix for each element.
 - (ii) Assemble the structural [global] stiffness matrix for entire truss.
 - (iii) Using elimination method find nodal displacement.
 - (iv) Find the stresses in all element.
 - (v) Calculate the reaction force.

Fig. on Page No 4

Fig [8]

13

9. A two dimensional plate is loaded by a 10 kN force as shown in fig [9]. The body force and fraction force may be neglected. The thickness of plate is 15 mm and elastic modulus $E = 2 \times 10^5 \text{ N/mm}^2$ and Poisson ratio $\mu = 0.3$

Determine are nodal displacements using plane stress condition

Fig. 9

13

10. Write short notes (any three) :-

- (i) Bi section Method.
- (ii) Simplex Search Method.
- (iii) Penalty Function Method.
- (iv) Golden Search Method.

14

SVK/KS/11-3407/3657

4

2100